Mecânica Quântica Uma Abordagem Conceitual

Carlos Eduardo Aguiar

Programa de Pós-Graduação em Ensino de Física Instituto de Física, Universidade Federal do Rio de Janeiro

Mecânica Quântica: Uma Abordagem Conceitual

- Ensino e Aprendizagem de Mecânica Quântica
- Fenômenos Quânticos
- Princípios da Mecânica Quântica
- Sistemas Quânticos Simples
- Realismo, Contextualidade e Não-localidade

Ensino e Aprendizagem de Mecânica Quântica

7mh $\frac{t_{14}}{4}$ (2aa⁺+ 2a⁺a) +a'a zata + Ta, at

Dificuldades na aprendizagem de mecânica quântica

Dificuldades conceituais

- Superposição quântica
- Probabilidade subjetiva × objetiva
- Complementaridade
- Transição quântico-clássico
- Realismo vs. localidade
- ...

Dificuldades matemáticas

- Vetores
- Números complexos
- Espaços vetoriais complexos
- Operadores, autovalores, autovetores
- Dimensão infinita, operadores diferenciais, funções especiais

- ...

Dificuldades na aprendizagem de mecânica quântica

- Entre os estudantes as dificuldades matemáticas ganham proeminência pela necessidade de adquirir domínio operacional da teoria, essencial a aplicações.
- Como veremos, é possível expor a teoria quântica, sem descaracterizá-la, reduzindo as ferramentas matemáticas a vetores e um pouco de números complexos. Com isso, torna-se viável dar mais atenção aos aspectos conceituais.
- Tal abordagem pode ser de interesse a alunos para os quais o aspecto operacional não é o mais importante (licenciandos em física, por exemplo).

Estrutura do Curso

- Ensino e Aprendizagem de Mecânica Quântica
- Fenômenos Quânticos
 - Fótons
 - Interferência de fótons
 - Interferência de partículas
 - Interferência e indistinguibilidade
- Princípios da Mecânica Quântica
 - Vetores de estado e o princípio da superposição
 - A regra de Born
 - Complementaridade e o princípio da incerteza
 - Redução do vetor de estado
 - Evolução unitária
 - Resumo: cinemática e dinâmica quânticas
 - O processo de medida e a transição quântico-clássico

Estrutura do Curso (cont.)

- Sistemas com mais de dois estados
- Sistemas compostos e emaranhamento
- Sistemas Quânticos Simples
 - Interferômetro de Mach-Zehnder
 - Caminhos indistinguíveis no interferômetro
 - Medida sem interação
 - O problema de Deutsch
- Realismo, Contextualidade e Não-localidade
 - Realismo e variáveis ocultas
 - Contextualidade e não-localidade

Leituras recomendadas

Alguns livros com abordagem semelhante à adotada no curso:

Nível introdutório

- ▶ R. P. Feynman, *QED A estranha teoria da luz e da matéria*, Gradiva, 1988.
- J. Polkinghorne, Quantum Theory: A Very Short Introduction, Oxford UP, 2002.
- ▶ V. Scarani, Quantum physics: a first encounter, Oxford UP, 2006.
- B. Rosenblum, F. Kuttner, Quantum Enigma: Physics Encounters Consciousness, Oxford UP, 2006.
- A. Rae, *Quantum Physics: Illusion or Reality?*, Cambridge UP, 2012.
- M. Le Bellac, *The Quantum World*, World Scientific, 2013.
- A. Cassinello, J. L. S. Gómes, O Mistério Quântico Uma Expedição às Fronteiras da Física, Planeta, 2017.

Leituras recomendadas (cont.)

Nível intermediário

- R. P. Feynman, R. B. Leighton, M. Sands, *Lições de Física de Feynman*, vol. III, Bookman, 2008. Original em inglês disponível em www.feynmanlectures.info/
- H. M. Nussenzveig, Curso de Física Básica: Ótica, Relatividade, Física Quântica, Blucher, 2002.
- I. M. Greca, V. E. Herscovitz, Introdução à Mecânica Quântica, UFRGS, 2002. Disponível em
 www.if.ufrgs.br/public/tapf/n13_2002_greca_herscovitz.pdf
- O. Pessoa Jr, *Conceitos de Física Quântica*, Livraria da Física, 2003.
- D. F. Styer, The Strange World of Quantum Mechanics, Cambridge UP, 2000.
- L. Susskind, A. Friedman, Quantum Mechanics: The Theoretical Minimum, Basic Books, 2014

Leituras recomendadas (cont.)

Nível avançado

- D. McIntyre, C. A. Manogue, J. Tate, Quantum Mechanics: A Paradigms Approach, Addison-Wesley, 2012.
- M. Le Bellac, Quantum Physics, Cambridge UP, 2006.
- ▶ M. Beck, Quantum Mechanics: Theory and Experiment, Oxford UP, 2012.
- ▶ J. Pade, *Quantum Mechanics for Pedestrians* (2 vols.), Springer, 2014.
- G. Greenstein, A. G. Zajonc, The Quantum Challenge: Modern Research on the Foundations of Quantum Mechanics, Jones & Bartlett, 2005.
- F. Laloë, Do We Really Understand Quantum Mechanics?, Cambridge UP, 2012.

Recursos para o ensino de mecânica quântica

Simulações em computador

- QuVis (University of St. Andrews) http://www.st-andrews.ac.uk/physics/quvis/
- PhET (University of Colorado) http://phet.colorado.edu/en/simulations/category/ physics/quantum-phenomena
- Interferômetro de Mach-Zehnder (UFRJ) http://www.if.ufrj.br/~carlos/trablicen/raphael/imz/

Material didático

The Quantum Exchange (American Association of Physics Teachers) https://www.compadre.org/quantum/

Fenômenos Quânticos

Charles Addams, The New Yorker, 1940

Sumário

• Ensino e Aprendizagem de Mecânica Quântica

• Fenômenos Quânticos

- Fótons
- Interferência de fótons
- Interferência de partículas
- Interferência e indistinguibilidade
- Princípios da Mecânica Quântica
- Sistemas Quânticos Simples
- Realismo, Contextualidade e Não-localidade

Um experimento com a luz

Resultado do experimento

Os detetores nunca disparam ao mesmo tempo: apenas um $(D_1 \text{ ou } D_2)$ é ativado a cada vez.

Fótons

Se a luz fosse uma onda

... os detetores deveriam disparar simultaneamente.

Se a luz for composta por partículas

 \ldots ou D_1 dispara, ou D_2 dispara.

Fótons

Conclusão

A luz é composta por partículas: os fótons.

O experimento de anticorrelação de Grangier *et al.*

- Realizado em 1986 por Philippe Grangier, Gérard Roger e Alain Aspect.
- A fonte luminosa "pouco intensa" usada no experimento não é fácil de construir.

O experimento de anticorrelação de Grangier *et al.*

P. Grangier, G. Roger, A. Aspect, Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences, Europhysics Letters 1, 173 (1986).

Resultado do experimento de anticorrelação

Sobre o ensino do conceito de fóton

- Os experimentos de anticoincidência fornecem evidência simples e direta do comportamento corpuscular da luz.
- Mais fácil de discutir (principalmente no ensino médio) que o efeito fotoelétrico.
- Ao contrário do que se lê em muitos livros-texto, o fóton não é necessário para explicar os efeitos fotoelétrico e Compton.
 - G. Beck, Zeitschrift f
 ür Physik 41, 443 (1927)
 - E. Schroedinger, Annalen der Physik 82, 257 (1927)

Outro experimento com a luz

Interferômetro de Mach-Zehnder

C. E. Aguiar (UFRJ)

Mecânica Quântica

2020 23 / 269

Preliminares: um feixe bloqueado

O outro feixe bloqueado

Resultado fácil de entender com partículas

De volta ao experimento com o interferômetro

Resultado do experimento

O detetor D_1 nunca dispara. Apenas D_2 registra a chegada dos fótons.

Difícil de entender se os fótons seguem caminhos definidos

Se o fóton segue o caminho 1 (2) não deveria fazer diferença se o caminho 2 (1) está aberto ou fechado. Portanto, deveria valer o resultado do experimento preliminar.

A proposição de Feynman[†]

Cada fóton segue ou o caminho 1 ou o caminho 2.

[†]The Feynman Lectures on Physics III, p. 1-5

Mecânica Quântica

A proposição de Feynman

Em termos das probabilidades:

Teste da proposição

No interferômetro de Mach-Zehnder obtemos experimentalmente:

$$P_{D_1} = 0\%$$
 $P_{D_2} = 100\%$

Nos experimentos preliminares encontramos:

$$P_{D_1}^{(1)} = 25\% \qquad P_{D_2}^{(1)} = 25\%$$

$$P_{D_1}^{(2)} = 25\% \qquad P_{D_2}^{(2)} = 25\%$$

$$P_{D_n} \neq P_{D_n}^{(1)} + P_{D_n}^{(2)} \implies$$
 a proposição é *falsa*!

Repetindo...

A afirmativa

"o fóton segue ou pelo caminho 1 ou pelo caminho 2"

é falsa.

"... um fenômeno que é impossível, *absolutamente* impossível, de explicar em qualquer forma clássica, e que traz em si o coração da mecânica quântica."

- R. P. Feynman,

The Feynman Lectures on Physics III, p.1-1

Por onde vai o fóton?

Por onde vai o fóton?

- Experimentalmente, a opção "ou 1 ou 2" é falsa.
- Se os dois caminhos forem fechados, nenhum fóton chega aos detetores. Logo, "nem 1 nem 2" também não é aceitável.
- Parece restar apenas a opção "1 e 2": o fóton segue os dois caminhos ao mesmo tempo.

Uma resposta melhor

- Não faz sentido falar sobre o caminho do fóton no interferômetro, pois a montagem experimental não permite distinguir os caminhos 1 e 2.
- A pergunta "qual o caminho do fóton?" só faz sentido frente a um aparato capaz de produzir uma resposta.

Quando alguém deseja ser claro sobre o que quer dizer com as palavras "posição de um objeto", por exemplo do elétron (em um sistema de referência), ele deve especificar experimentos determinados com os quais pretende medir tal posição; do contrário essas palavras não terão significado.

- W. Heisenberg,

The physical content of quantum kinematics and mechanics (o artigo de 1927 sobre o princípio da incerteza)
Fácil de entender num modelo ondulatório

Caminhos de comprimentos variáveis

 L_1 e L_2 = comprimentos ajustáveis dos braços do interferômetro

Padrão de interferência

Resultado experimental: as probabilidades P_{D_1} e P_{D_2} dependem de $L_1 - L_2$.

Padrão de interferência

- As probabilidades não dependem de $L_1 + L_2$, apenas de $L_1 L_2$.
- O padrão de interferência permite definir um comprimento de onda.
- Só há um fóton por vez no interferômetro: o fóton "interfere com ele mesmo".
- A linhas tracejadas correspondem a P_{D1} = P_{D2} = 0.5, ou seja, à hipótese de que o fóton seguiu um único caminho (ou 1 ou 2). A discordância com o resultado experimental mostra novamente que essa hipótese é falsa.
- Dito de outra maneira: se o fóton seguiu por um único caminho, como ele poderia saber o comprimento do outro caminho (por onde não passou)? Entretanto, é isso que determina a probabilidade dele chegar aos diferentes detetores.

O experimento de Grangier, Roger & Aspect

P. Grangier, G. Roger, A. Aspect, Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences, Europhysics Letters 1, 173 (1986).

A dualidade onda-partícula

Você tinha que saber qual experimento estava analisando para dizer se a luz era onda ou partícula. Esse estado de confusão foi chamado de "dualidade onda-partícula"...

> - R. P. Feynman, QED – The Strange Theory of Light and Matter

A dualidade onda-partícula

De uma vez por todas: eu desejo saber o que estou pagando. Quando a companhia elétrica me disser se a luz é uma onda ou uma partícula, eu farei o cheque!

Interferência de nêutrons

S. A. Werner, Neutron interferometry, Physics Today 33 (12), 24 (1980)

Feynman Lectures on Physics III, fig. 1-1

Partículas "clássicas" passam ou pela fenda 1 ou pela fenda 2

 $\implies P_{12}(x) = P_1(x) + P_2(x)$

Resultado do experimento:

Feynman Lectures on Physics III, fig. 1-3

$P_{12}(x) \neq P_1(x) + P_2(x)$

 \implies o elétron não passa "ou pela fenda 1 ou pela fenda 2"

Mecânica Quântica

Formação do padrão de interferência elétron a elétron

R. Bach et al., Controlled double-slit electron diffraction, New J. Phys. 15, 033018 (2013)

Medida das distribuições $P_1(x)$, $P_2(x)$ e $P_{1,2}(x)$

R. Bach et al., Controlled double-slit electron diffraction, New J. Phys. 15, 033018 (2013)

E se os caminhos forem distinguíveis?

O padrão de interferência desaparece!

$\phi \leftrightarrow \text{``diferença de caminhos''}$

P. Bertet *et al.*, A complementarity experiment with an interferometer at the quantum-classical boundary, Nature <u>411</u>, 166 (2001)

E se os caminhos forem distinguíveis?

P. Bertet et al., A complementarity experiment with an interferometer at the quantum-classical boundary, Nature <u>411</u>, 166 (2001)

E se a informação sobre o caminho for apagada?

A interferência retorna!

impossibilidade de determinar o caminho \implies interferência

P. Bertet et al., A complementarity experiment with an interferometer at the quantum-classical boundary, Nature <u>411</u>, 166 (2001)

0	-	Δ	
С.	E. /	Agular	(UFRJ)

Quando há interferência?

Resultado pode ser obtido de duas maneiras alternativas, indistinguíveis experimentalmente

interferência ("1 e 2")

Resultado pode ser obtido de duas maneiras alternativas, distinguíveis experimentalmente ("ou 1 ou 2")

não há interferência

Distinguibilidade \times indistinguibilidade

▶ 1 e 2 <u>distinguíveis</u>: $P(A \rightarrow B) = P_1(A \rightarrow B) + P_2(A \rightarrow B)$

▶ 1 e 2 indistinguíveis: $P(A \rightarrow B) \neq P_1(A \rightarrow B) + P_2(A \rightarrow B)$

Princípios da Mecânica Quântica

Sumário

• Ensino e Aprendizagem de Mecânica Quântica

• Fenômenos Quânticos

• Princípios da Mecânica Quântica

- Vetores de estado e o princípio da superposição
- A regra de Born
- Complementaridade e o princípio da incerteza
- Redução do vetor de estado
- Evolução unitária
- Resumo: cinemática e dinâmica quânticas
- O processo de medida e a transição quântico-clássico
- Sistemas com mais de dois estados
- Sistemas compostos e emaranhamento

Sistemas Quânticos Simples

• Realismo, Contextualidade e Não-localidade

Vetores de Estado e o Princípio da Superposição

Princípio da superposição

Sistemas de dois estados

esquerda / direita
horizontal / vertical
para cima / para baixo
sim / não

▶ 0 / 1

Princípio da superposição

Sistemas de dois estados

Sistemas de dois estados

Grandeza física observável:
$$A = \begin{cases} a_1 \\ a_2 \end{cases}$$

Sistemas clássicos

- Sistema clássico de dois estados, $A = a_1$ e $A = a_2$.
- Representação dos estados: pontos no "eixo dos valores de A".

Sistemas quânticos: vetores de estado

- Sistema quântico de dois estados, $A = a_1$ e $A = a_2$.
- Representação dos estados: vetores ortogonais (de comprimento unitário) em um espaço de duas dimensões.

A notação de Dirac

vetor
$$\leftrightarrow |\cdots\rangle$$

 f identificação

exemplos:
$$\begin{cases} |a_1\rangle & |a_2\rangle \\ |0\rangle & |1\rangle \\ |\uparrow\rangle & |\downarrow\rangle \\ |\leftrightarrow\rangle & |\downarrow\rangle \\ |aqui\rangle & |ali\rangle \end{cases}$$

O que muda?

Passar de dois pontos em uma reta para dois vetores perpendiculares não parece ser mais que uma mudança no sistema de "etiquetagem" dos estados.

O que muda é o seguinte:

O princípio da superposição

Qualquer combinação linear dos vetores $|a_1\rangle \in |a_2\rangle$ representa um estado físico do sistema.

$$\left|\psi\right\rangle = c_1 \left|a_1\right\rangle + c_2 \left|a_2\right\rangle$$

Princípio da superposição

Significado de $|\psi\rangle?$

- ▶ $A = a_1 e A = a_2?$
- fóton pelo caminho 1 e pelo caminho 2?

O espaço de estados é grande

- Um sistema quântico de dois estados tem muito mais que dois estados, tem infinitos estados.
- Os estados $|a_1\rangle$ e $|a_2\rangle$ formam uma *base* do espaço de estados.

Princípio da superposição: formulação geral

Se $|\phi\rangle$ e $|\chi\rangle$ são vetores de estado, qualquer combinação linear deles representa um estado físico do sistema.

$$\left|\psi\right\rangle = \alpha \left|\phi\right\rangle + \beta \left|\chi\right\rangle$$

Uma complicação

- Os números que multiplicam os vetores (os "escalares") podem ser números complexos: o espaço de estados é um *espaço vetorial complexo*.
- Deve-se ter cuidado com figuras como esta:

Mais complicações

- Qual o significado de "ortogonalidade" num espaço vetorial complexo?
- Como se define "comprimento" de um vetor nesse espaço?

As respostas são encontradas definindo-se o *produto escalar* de vetores nesse espaço.

C. E. Aguiar (UFRJ)

Mecânica Quântica

2020 69 / 269

O produto escalar usual

Produto escalar de dois vetores "geométricos" \vec{A} e \vec{B} :

1.
$$\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$$

2. $\vec{A} \cdot (\lambda \vec{B}) = \lambda (\vec{A} \cdot \vec{B})$
3. $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
4. $\vec{A} \cdot \vec{A} \ge 0$
5. $\vec{A} \cdot \vec{A} = 0 \iff \vec{A} = 0$ ("0" é o vetor nulo)

O produto escalar em um espaço vetorial complexo

O produto escalar (ou produto interno) de dois vetores $|\phi\rangle \in |\psi\rangle$ é um número complexo $\langle \phi | \psi \rangle$ com as seguintes propriedades:

1.
$$|\psi\rangle = |\psi_1\rangle + |\psi_2\rangle \implies \langle \phi |\psi\rangle = \langle \phi |\psi_1\rangle + \langle \phi |\psi_2\rangle$$

2.
$$|\psi\rangle = c |\chi\rangle \implies \langle \phi |\psi\rangle = c \langle \phi |\chi\rangle$$

3. $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$ (o asterisco * indica o conjugado complexo)

4. $\langle\psi|\psi
angle\geq 0$ (devido a (3), $\langle\psi|\psi
angle$ deve ser real)

5.
$$\langle \psi | \psi
angle = 0 \iff | \psi
angle = 0$$
 ("0" é o vetor nulo)

O produto escalar em um espaço vetorial complexo

Forçando um pouco a notação de Dirac podemos escrever as propriedades (1) e (2) como:

1.
$$\langle \phi | \psi_1 + \psi_2 \rangle = \langle \phi | \psi_1 \rangle + \langle \phi | \psi_2 \rangle$$

2.
$$\langle \phi | c \psi \rangle = c \langle \phi | \psi \rangle$$

Podemos também reuni-las numa só expressão:

$$\blacktriangleright \langle \phi | c_1 \psi_1 + c_2 \psi_2 \rangle = c_1 \langle \phi | \psi_1 \rangle + c_2 \langle \phi | \psi_2 \rangle$$
O produto escalar em um espaço vetorial complexo

- É importante notar que num espaço vetorial complexo o produto escalar não é comutativo. Pela propriedade (3), a ordem dos fatores altera o produto.
- Uma consequência disso é que o produto escalar é antilinear no primeiro argumento:

$$\langle c\phi|\psi\rangle = c^* \langle \phi|\psi\rangle$$

ou, de maneira mais geral,

$$\langle c_1\phi_1 + c_2\phi_2|\psi\rangle = c_1^* \langle \phi_1|\psi\rangle + c_2^* \langle \phi_2|\psi\rangle$$

Ortogonalidade

Dois vetores $|\phi\rangle$ e $|\psi\rangle$ são ditos *ortogonais* se seu produto escalar for zero: $\langle \phi |\psi \rangle = 0$

Norma

A norma do vetor
$$|\psi\rangle$$
 é definida por
$$\|\psi\| = \sqrt{\langle \psi |\psi\rangle}$$

- $\begin{aligned} \|\psi\| \leftrightarrow \text{``comprimento'', ``tamanho'', ``módulo'' do vetor } |\psi\rangle \\ & |\psi\rangle = c \, |\phi\rangle \implies \|\psi\| = |c| \, \|\phi\| \ (|c| \notin o \text{ módulo do número } c) \\ & \|\psi\| = 0 \iff |\psi\rangle = 0 \end{aligned}$
- ▶ algumas vezes escreveremos $\| \ket{\psi} \|$ em vez de $\| \psi \|$

Ortonormalidade da base associada a uma grandeza física

Ao introduzir os vetores $|a_1\rangle \in |a_2\rangle$ que representam os estados com $A = a_1 \in A = a_2$, postulamos que eles seriam ortogonais entre si e teriam norma unitária (formam um conjunto *ortonormal*):

$$\langle a_1 | a_2 \rangle = 0$$
, $|| |a_1 \rangle || = || |a_2 \rangle || = 1$

Podemos escrever essas condições de forma mais sucinta e útil:

$$\langle a_i | a_j \rangle = \delta_{ij}$$

onde o delta de Kronecker é definido por

$$\delta_{ij} = \begin{cases} 1 & \text{se } i = j \\ 0 & \text{se } i \neq j \end{cases}$$

O produto escalar em termos das componentes

$$\begin{split} |\psi\rangle &= c_1 |a_1\rangle + c_2 |a_2\rangle \\ |\phi\rangle &= d_1 |a_1\rangle + d_2 |a_2\rangle \\ &\swarrow \\ \langle \phi |\psi\rangle &= \sum_{i,j=1}^2 d_i^* c_j \langle a_i |a_j\rangle = \sum_{i,j=1}^2 d_i^* c_j \,\delta_{ij} \\ &\swarrow \\ &\swarrow \\ &\swarrow \\ &\swarrow \\ &\swarrow \\ &\swarrow \\ &\land \\ & \langle \phi |\psi\rangle = d_1^* c_1 + d_2^* c_2 \end{split}$$

A norma em termos das componentes

$$\langle \phi | \psi \rangle = d_1^* c_1 + d_2^* c_2$$

$$\langle \psi | \psi \rangle = c_1^* c_1 + c_2^* c_2 = |c_1|^2 + |c_2|^2$$

 $\mathbf{1}$

$$\|\psi\| = \sqrt{|c_1|^2 + |c_2|^2}$$

As componentes em termos do produto escalar

$$\begin{split} |\psi\rangle &= c_1 |a_1\rangle + c_2 |a_2\rangle \\ & \clubsuit \\ a_i |\psi\rangle &= \sum_{j=1}^2 c_j \langle a_i | a_j \rangle = \sum_{j=1}^2 c_j \, \delta_{ij} \\ & \clubsuit \\ c_i &= \langle a_i | \psi \rangle \end{split}$$

Para um sistema no estado $|\psi\rangle = c_1 |a_1\rangle + c_2 |a_2\rangle$, a probabilidade de uma medida de A resultar em $a_n (n = 1, 2)$ é

$$P(a_n) = \frac{|c_n|^2}{|c_1|^2 + |c_2|^2}$$

A regra de Born

$$|\psi\rangle = c_1 |a_1\rangle + c_2 |a_2\rangle$$

A regra de Born

Como

$$c_n = \langle a_n | \psi \rangle$$

е

$$\|\psi\| = \sqrt{|c_1|^2 + |c_2|^2}$$

a regra de Born pode ser escrita como

$$P(a_n) = \frac{|\langle a_n | \psi \rangle|^2}{\|\psi\|^2}$$

A probabilidade de qualquer resultado

A probabilidade da medida resultar em qualquer um dos resultados possíveis é 100%, como não poderia deixar de ser, pois

$$P(a_1) + P(a_2) = \frac{|c_1|^2}{|c_1|^2 + |c_2|^2} + \frac{|c_2|^2}{|c_1|^2 + |c_2|^2} = 1$$

Normalização do vetor de estado

$$|\psi
angle = \lambda |\psi
angle$$

$$P(\phi \to a_n) = \frac{|\langle a_n | \phi \rangle|^2}{\|\phi\|^2} = \frac{|\lambda|^2 |\langle a_n | \psi \rangle|^2}{|\lambda|^2 \|\psi\|^2} = P(\psi \to a_n)$$

 $\implies |\psi\rangle$ e $|\phi\rangle$ representam o mesmo estado físico!

Vetores normalizados

 $|\psi\rangle$

Podemos trabalhar apenas com vetores normalizados:

 $\|\psi\|=1$

Vetores normalizados

> Para normalizar (à unidade) um vetor de estado $|\psi\rangle$, basta dividir o vetor pela sua norma:

$$|\psi\rangle \to \frac{|\psi\rangle}{\|\psi\|}$$

Em termos das componentes,

$$c_n \to \frac{c_n}{\sqrt{|c_1|^2 + |c_2|^2}}$$

.

Fases global e relativa

- Mesmo com a normalização, ainda não há um único vetor representando o estado.
- Por exemplo, o estado físico descrito pelo vetor normalizado |ψ⟩ é igualmente representado pelo vetor normalizado |ψ⟩.
- ▶ De maneira mais geral, os vetores $|\psi_{\theta}\rangle = e^{-i\theta} |\psi\rangle$ representam o mesmo estado físico para qualquer valor (real) da fase θ , já que $|e^{-i\theta}| = 1$.
- Um vetor de estado normalizado é definido a menos de um fator de fase global.
- Ao contrário da fase global, fases relativas em uma superposição de estados têm significado físico: os vetores |ψ_θ⟩ = |φ₁⟩ + e^{-iθ} |φ₂⟩ não têm todos a mesma direção e representam estados físicos diferentes (considere |φ₁⟩ ± |φ₂⟩, por exemplo).

A regra de Born para vetores normalizados

$$|\psi\rangle = c_1 |a_1\rangle + c_2 |a_2\rangle$$
 (normalizado) $\implies P(a_n) = |c_n|^2$

A regra de Born para vetores normalizados

Em termos do produto escalar, se $|\psi\rangle$ está normalizado a probabilidade é dada por

$$P(a_n) = |\langle a_n | \psi \rangle|^2$$

Amplitude de probabilidade

- $c_n = \langle a_n | \psi \rangle \leftrightarrow$ amplitude de probabilidade
- probabilidade = $|amplitude \ de \ probabilidade|^2$

Exemplo: a "função de onda" (grandeza física = posição x) $\psi(x_n) = \langle x_n | \psi \rangle$ $P(x_n) = |\psi(x_n)|^2$

Amplitude de probabilidade

De maneira mais geral:

- ► $\langle \phi | \psi \rangle$ = amplitude de probabilidade de uma medida feita sobre um sistema no estado $|\psi\rangle$ ter como resultado o estado $|\phi\rangle$.
- ▶ $P(\psi \rightarrow \phi) = |\langle \phi | \psi \rangle|^2 =$ probabilidade de uma medida feita sobre um sistema no estado $|\psi\rangle$ ter como resultado o estado $|\phi\rangle$.

▶ $P(\psi \to \phi) = P(\phi \to \psi)$, embora $\langle \psi | \phi \rangle \neq \langle \phi | \psi \rangle$ (são conjugados).

O resultado de muitas medidas

Frequência de resultados em muitas medidas

Mesmo conhecendo o vetor de estado

$$\left|\psi\right\rangle = c_1 \left|a_1\right\rangle + c_2 \left|a_2\right\rangle$$

geralmente é impossível prever o resultado da próxima medida.

A regra de Born prevê a frequência dos resultados em um número muito grande de medidas:

$$\frac{N_1}{N} = P(a_1) = |c_1|^2$$
$$\frac{N_2}{N} = P(a_2) = |c_2|^2$$

Valor médio de muitas medidas

• O valor médio de A nas N medidas é

$$\langle A \rangle = \frac{N_1 a_1 + N_2 a_2}{N}$$

Com a regra de Born podemos prever o valor médio de A:

$$\langle A \rangle = |c_1|^2 a_1 + |c_2|^2 a_2$$

Incerteza

▶ $c_1, c_2 \neq 0 \iff$ impossível prever o resultado da medida

$$\begin{array}{ccc} \mathbf{c}_1 = 0 & (\implies |c_2| = 1) \\ c_2 = 0 & (\implies |c_1| = 1) \end{array} \end{array} \right\} \iff \text{é possível prever o resultado}$$

Incerteza

- Se é possível prever o resultado da medida, dizemos que o valor de A está bem definido no estado |ψ⟩.
- Se não é possível prever o resultado da medida, dizemos que o valor de A tem uma incerteza.

Incerteza
$$\Delta A$$
 no estado $|\psi\rangle$
 $(\Delta A)^2 = \left\langle (A - \langle A \rangle)^2 \right\rangle = \langle A^2 \rangle - \langle A \rangle^2$

Incerteza nula

Complementaridade e o Princípio da Incerteza

Complementaridade

Complementaridade

Duas grandezas físicas: $A \in B$

Grandezas compatíveis e incompatíveis

A e B complementares: incompatibilidade "máxima"

Mecânica Quântica

Princípio da incerteza

A e B incompatíveis \implies nenhum estado $|\psi\rangle$ com $\Delta A = 0$ e $\Delta B = 0$

Exemplo: posição e momentum

- Duas posições: $|x_1\rangle$ e $|x_2\rangle$ ("aqui" e "ali")
- ▶ Dois estados de movimento: $|p_1\rangle$ e $|p_2\rangle$ ("repouso" e "movimento")

é impossível ter um estado com posição e momentum bem definidos

Redução do Vetor de Estado

O vetor de estado após a medida

Redução do vetor de estado

Se uma medida resulta em $A = a_n$, logo após a medida o estado do sistema deve ser $|a_n\rangle$.

Repetibilidade

- ▶ O colapso para $|a_n\rangle$ garante que a medida é repetível: se a refizermos logo em seguida encontraremos $A = a_n$ novamente, com 100% de probabilidade.
- Na prática, em muitos aparatos de medida, o colapso correspondente ao resultado A = a_n não leva ao estado |a_n⟩, mas para algum outro estado |χ_n⟩. Por exemplo:
 - Um fóton geralmente é absorvido durante sua detecção; não há mais fóton após a primeira medida e o estado final é "zero fótons".
 - A energia de um nêutron pode ser medida pelo recuo de um próton com o qual o nêutron colide (em uma câmara de bolhas, por exemplo). Após a colisão a energia do nêutron não tem mais o valor inicial.

Em casos como esses há um colapso mas a medida não é repetível.

Preparação de estados

- A redução do vetor de estado permite colocar o sistema em um estado conhecido.
- Preparação da "condição inicial" em experimentos.

$$|?\rangle \dots \rightarrow |\psi\rangle = |a_1\rangle$$
Medidas simultâneas de duas grandezas

- $A \in B$ incompatíveis:
 - É impossível construir um aparato capaz de realizar medidas simultâneas e *repetíveis* de A e B.
 - É impossível construir um aparato capaz de preparar o sistema em um estado com A e B bem definidos.

Evolução Unitária

Dinâmica quântica

Evolução temporal do vetor de estado: $|\psi(0)\rangle \rightarrow |\psi(t)\rangle$

 A dinâmica quântica é determinada pela energia do sistema (o conceito de força é pouco relevante).

A (solução da) equação de Schroedinger

$$|\psi(0)\rangle = c_1 |E_1\rangle + c_2 |E_2\rangle$$

$$|\psi(t)\rangle = c_1 e^{-iE_1t/\hbar} |E_1\rangle + c_2 e^{-iE_2t/\hbar} |E_2\rangle$$

Evolução unitária

A (solução da) equação de Schroedinger

- $\hbar = \text{constante de Planck } (/2\pi) \approx 1 \times 10^{-34} \text{Js}$
- Números complexos são inevitáveis. Mesmo que as componentes do vetor de estado sejam reais em t = 0, para t ≠ 0 elas serão complexas:

$$c_n(t) = c_n e^{-iE_n t/\hbar}$$

▶ A evolução $|\psi(0)\rangle \rightarrow |\psi(t)\rangle$ ditada pela equação de Schroedinger é *contínua* (sem 'saltos quânticos') e *determinística* (sem elementos probabilísticos).

Linearidade

$$|\psi(0)\rangle = \alpha |\phi(0)\rangle + \beta |\chi(0)\rangle$$

$$\begin{array}{l} |\phi(0)\rangle \to |\phi(t)\rangle \\ |\chi(0)\rangle \to |\chi(t)\rangle \end{array} \implies |\psi(t)\rangle = \alpha |\phi(t)\rangle + \beta |\chi(t)\rangle$$

Evolução unitária

Propriedades da (solução da) equação de Schroedinger

• Demonstração:

$$\begin{aligned} |\phi(0)\rangle &= c_1 |E_1\rangle + c_2 |E_2\rangle ,\\ |\chi(0)\rangle &= d_1 |E_1\rangle + d_2 |E_2\rangle \end{aligned}$$

$$\implies |\psi(0)\rangle = \alpha |\phi(0)\rangle + \beta |\chi(0)\rangle$$
$$= (\alpha c_1 + \beta d_1) |E_1\rangle + (\alpha c_2 + \beta d_2) |E_2\rangle$$

$$\implies |\psi(t)\rangle = (\alpha c_1 + \beta d_1)e^{-iE_1t/\hbar} |E_1\rangle + (\alpha c_2 + \beta d_2)e^{-iE_2t/\hbar} |E_2\rangle$$
$$= \alpha \left(c_1 e^{-iE_1t/\hbar} |E_1\rangle + c_2 e^{-iE_2t/\hbar} |E_2\rangle\right)$$
$$+ \beta \left(d_1 e^{-iE_1t/\hbar} |E_1\rangle + d_2 e^{-iE_2t/\hbar} |E_2\rangle\right)$$
$$= \alpha |\phi(t)\rangle + \beta |\chi(t)\rangle$$

Conservação do produto escalar

$$\langle \phi(t) | \psi(t) \rangle = \langle \phi(0) | \psi(0) \rangle$$

 \implies Conservação da norma

 $\|\psi(t)\|=\|\psi(0)\|$

 \implies Conservação da ortogonalidade

 $|\psi(0)\rangle\, {\rm ortogonal}\,\, {\rm a}\, |\phi(0)\rangle \iff |\psi(t)\rangle\, {\rm ortogonal}\,\, {\rm a}\, |\phi(t)\rangle$

• Demonstração:

$$\begin{aligned} |\psi(t)\rangle &= c_1 e^{-iE_1t/\hbar} |E_1\rangle + c_2 e^{-iE_2t/\hbar} |E_2\rangle ,\\ |\phi(t)\rangle &= d_1 e^{-iE_1t/\hbar} |E_1\rangle + d_2 e^{-iE_2t/\hbar} |E_2\rangle \end{aligned}$$

$$\implies \langle \phi(t) | \psi(t) \rangle = \left(d_1 e^{-iE_1 t/\hbar} \right)^* \left(c_1 e^{-iE_1 t/\hbar} \right) \\ + \left(d_2 e^{-iE_2 t/\hbar} \right)^* \left(c_2 e^{-iE_2 t/\hbar} \right) \\ = d_1^* c_1 + d_2^* c_2 \\ = \langle \phi(0) | \psi(0) \rangle$$

Evolução unitária:

- Determinismo
- Continuidade
- Linearidade
- Conservação do produto escalar
 - Conservação da norma
 - Conservação da ortogonalidade

Evolução unitária

Estados estacionários

Estado de energia bem definida E_n:

$$|\psi(0)\rangle = |E_n\rangle \implies |\psi(t)\rangle = e^{-iE_nt/\hbar} |E_n\rangle$$

- $|\psi(0)\rangle \in |\psi(t)\rangle$ diferem por um fator de fase $\implies |\psi(0)\rangle \in |\psi(t)\rangle$ representam o mesmo estado físico.
- Estados de energia bem definida são "estados estacionários".

Conservação da energia

$$|\psi(t)\rangle = c_1 e^{-iE_1 t/\hbar} |E_1\rangle + c_2 e^{-iE_2 t/\hbar} |E_2\rangle$$

$$P(E_n, t) = |c_n e^{-iE_n t/\hbar}|^2 = |c_n|^2$$

$$\langle E \rangle_{\psi(t)} = |c_1 e^{-iE_1 t/\hbar}|^2 E_1 + |c_2 e^{-iE_2 t/\hbar}|^2 E_2$$

$$= |c_1|^2 E_1 + |c_2|^2 E_2$$

$$\implies \begin{cases} P(E_n,t) = P(E_n,0) \\ \langle E \rangle_{\psi(t)} = \langle E \rangle_{\psi(0)} \end{cases}$$

A energia é conservada, em média.

Resumo: cinemática e dinâmica quânticas

Resumo: cinemática e dinâmica quânticas

Resumo: cinemática e dinâmica quânticas

O Processo de Medida e a Transição Quântico-Clássico

Redução do vetor de estado \times evolução unitária

Redução do vetor de estado:

- Descontínua
- Probabilística
- Ocorre durante o processo de medida

Evolução unitária:

- Contínua
- Determinística
- Válida enquanto não se faz uma medida

Dois tipos de evolução temporal?

Redução do vetor de estado:

- Interação do sistema quântico com um aparato clássico, o aparelho de medida ou "observador".
- $A = a_1 \underline{ou} a_2$ (medida resulta em um único valor)

Evolução unitária:

- Interação do sistema quântico com outro sistema quântico.
- $A = a_1 \underline{e} a_2$ (superposição quântica de estados)

2020

O "problema da medida"

Por que o processo de medida não segue a evolução unitária?

Descrição quântica do aparelho de medida:

O "problema da medida"

Se aparato é um bom aparelho de medida:

antes da medida
$$egin{array}{ccc} |a_1\uparrow
angle o |a_1\searrow
angle \ |a_2\uparrow
angle o |a_2\nearrow
angle \ depois da medida \end{array}$$

Se a evolução unitária for aplicável ao aparelho de medida:

$$c_1 |a_1 \uparrow\rangle + c_2 |a_2 \uparrow\rangle \to c_1 |a_1 \nwarrow\rangle + c_2 |a_2 \nearrow\rangle$$

 \Rightarrow o ponteiro aponta em duas direções ao mesmo tempo!

O "problema da medida"

- Por que as superposições quânticas não são encontradas no mundo macroscópico?
 - Jamais se observou um ponteiro macroscópico apontando em duas direções ao mesmo tempo.
 - Um gato não pode estar simultaneamente vivo e morto.
- Como conciliar o espaço quântico de infinitos estados com a observação de apenas alguns poucos estados macroscópicos?

Uma descrição do processo de medida baseada na evolução unitária deve necessariamente dar resposta a essas questões.

Física quântica \times física clássica

 Por medida, na mecânica quântica, nós entendemos qualquer processo de interação entre objetos clássicos e quânticos...
 – L. Landau & E. Lifshitz, Quantum Mechanics

... os instrumentos de medida, para funcionarem como tal, não podem ser propriamente incluídos no domínio de aplicação da mecânica quântica.

- N. Bohr, carta a Schroedinger, 26 de outubro de 1935

...o 'aparato' não deveria ser separado do resto do mundo em uma caixa preta, como se não fosse feito de átomos e não fosse governado pela mecânica quântica.

- J. Bell, Against measurement

Física quântica \times física clássica

... a mecânica quântica ocupa um lugar muito incomum entre as teorias físicas: ela contém a mecânica clássica como um caso limite, mas ao mesmo tempo requer esse caso limite para sua própria formulação...
 L. Landau & E. Lifshitz, *Quantum Mechanics*

Os gatos de Schroedinger

Sistemas com Mais de Dois Estados

Sistemas de 3 estados

Três valores possíveis para a grandeza A:

- ► base ortonormal: $\langle a_m | a_n \rangle = \delta_{mn}$, m, n = 1, 2, 3
- superposição: $|\psi
 angle=c_1\,|a_1
 angle+c_2\,|a_2
 angle+c_3\,|a_3
 angle$
- \blacktriangleright amplitude de probabilidade: $c_n = \langle a_n | \psi
 angle$
- probabilidade $P(a_n) = |c_n|^2$

Sistemas de N estados

N valores possíveis para a grandeza A:

▶ base ortonormal: $\langle a_m | a_n \rangle = \delta_{mn}$, m, n = 1, 2, ..., N▶ superposição: $|\psi\rangle = \sum_{n=1}^{N} c_n |a_n\rangle$

• amplitude de probabilidade: $c_n = \langle a_n | \psi \rangle$

• probabilidade
$$P(a_n) = |c_n|^2$$

Sistemas de infinitos estados

 ${\cal N}$ pode ser infinito:

▶ base ortonormal: \langle a_m | a_n \rangle = \delta_{mn}, m, n = 1, 2, 3, ...
▶ superposição: |\psi \rangle = \sum_{n=1}^{\infty} c_n | a_n \rangle

• amplitude de probabilidade: $c_n = \langle a_n | \psi \rangle$

• probabilidade
$$P(a_n) = |c_n|^2$$

Sistemas de infinitos estados

 ${\cal N}$ pode ser infinito, e os valores de a contínuos:

• superposição:
$$|\psi\rangle = \int da \, c(a) \, |a\rangle$$

- ▶ amplitude de probabilidade: $c(a) = \langle a | \psi \rangle$
- densidade de probabilidade: $\rho(a) = |c(a)|^2$

• probabilidade:
$$P(a_1, a_2) = \int_{a_1}^{a_2} da \, |c(a)|^2$$

▶ base ortonormal: $\langle a | a'
angle = \delta(a - a') \leftrightarrow$ função delta de Dirac

2020

A função delta de Dirac

"Definição":

$$\delta(x-c) = \begin{cases} 0, & x \neq c \\ \infty, & x = c \end{cases}$$
$$\int_{-\infty}^{\infty} dx f(x) \delta(x-c) = f(c)$$

Comparação com a delta de Kronecker:

$$\delta_{mn} = \begin{cases} 0, & m \neq n \\ 1, & m = n \end{cases}$$

$$\sum_{m=-\infty}^{\infty} F_m \delta_{mn} = F_n$$

Sistemas de infinitos estados: a função de onda

Exemplo: x = posição de uma partícula

• base ortonormal:
$$\langle x|x'\rangle = \delta(x-x')$$

• superposição:
$$|\psi\rangle = \int_{-\infty}^{\infty} dx \,\psi(x) \,|x\rangle$$

- \blacktriangleright amplitude de probabilidade: $\psi(x) = \langle x | \psi \rangle \leftrightarrow$ função de onda
- ▶ densidade de probabilidade: $\rho(x) = |\psi(x)|^2$

• probabilidade:
$$P(x_1, x_2) = \int_{x_1}^{x_2} dx \, |\psi(x)|^2$$

Onipresença quântica

Sistemas Compostos e Emaranhamento

Sistemas individuais

 \blacktriangleright $|\varphi\rangle$: estado do sistema 2

Sistema composto

Estados separáveis:

 $|\psi,\varphi\rangle$: subsistema 1 no estado $|\psi\rangle$, subsistema 2 no estado $|\varphi\rangle$

Estados separáveis

Superposição no subsistema 1:

$$|a\psi + b\psi', \varphi\rangle = a |\psi, \varphi\rangle + b |\psi', \varphi\rangle$$

Superposição no subsistema 2:

$$|\psi, c\varphi + d\varphi'\rangle = c |\psi, \varphi\rangle + d |\psi, \varphi'\rangle$$

Essas propriedades tornam natural definir um "produto" de estados.
Produto tensorial

$$\left|\psi,\varphi\right\rangle\equiv\left|\psi\right\rangle_{1}\otimes\left|\varphi\right\rangle_{2}\equiv\left|\psi\right\rangle_{1}\left|\varphi\right\rangle_{2}$$

O produto tensorial \otimes é, por definição, "linear":

$$\begin{aligned} \bullet & \left(a \left| \psi \right\rangle_1 + b \left| \psi' \right\rangle_1 \right) \otimes \left| \varphi \right\rangle_2 = a \left| \psi \right\rangle_1 \otimes \left| \varphi \right\rangle_2 + b \left| \psi' \right\rangle_1 \otimes \left| \varphi \right\rangle_2 \\ \bullet & \left| \psi \right\rangle_1 \otimes \left(c \left| \varphi \right\rangle_2 + d \left| \varphi' \right\rangle_2 \right) = c \left| \psi \right\rangle_1 \otimes \left| \varphi \right\rangle_2 + d \left| \psi \right\rangle_1 \otimes \left| \varphi' \right\rangle_2 \end{aligned}$$

⇒ resultado esperado para a superposição em um dos subsistemas

Base do espaço de estados do sistema composto

- ▶ Base ortonormal no espaço do sistema 1: |a_m⟩, m = 1, 2, ...
 Base ortonormal no espaço do sistema 2: |b_n⟩, n = 1, 2, ...
- Base ortonormal no espaço de estados do sistema composto:

$$|a_m, b_n\rangle = |a_m\rangle_1 \otimes |b_n\rangle_2$$

Relação de ortonormalidade:

$$\langle a_m, b_n | a_i, b_j \rangle = \delta_{mi} \, \delta_{nj}$$

Espaço de estados do sistema composto

Vetor do espaço de estados do sistema composto:

$$|\Psi\rangle = \sum_{m,n} c_{mn} |a_m, b_n\rangle \equiv \sum_{m,n} c_{mn} |a_m\rangle_1 \otimes |b_n\rangle_2$$

• Amplitude de probabilidade: $c_{mn} = \langle a_m, b_n | \Psi \rangle$

- ► Espaço de estados do sistema composto: H = H₁ ⊗ H₂
 → produto tensorial dos espaços de estados dos sistemas 1 e 2
- ► dimensão de $\mathcal{H}_1 = N$, dimensão de $\mathcal{H}_2 = M$ $\implies N$ vetores na base $|a_m\rangle$, M vetores na base $|b_n\rangle$ $\implies N \times M$ vetores na base $|a_m, b_n\rangle$ \implies dimensão de $\mathcal{H} = N \times M$

2020

Estados separáveis

Estados dos sistemas 1 e 2:

$$|\psi\rangle_1 = \sum_m \alpha_m |a_m\rangle_1, \quad |\varphi\rangle_2 = \sum_n \beta_n |b_n\rangle_2$$

Estado separável do sistema composto:

$$\begin{split} |\psi,\varphi\rangle &= |\psi\rangle_1 \otimes |\varphi\rangle_2 \\ &= \left(\sum_m \alpha_m |a_m\rangle_1\right) \otimes \left(\sum_n \beta_n |b_n\rangle_2\right) \\ &= \sum_{m,n} \alpha_m \beta_n |a_m\rangle_1 \otimes |b_n\rangle_2 \\ &= \sum_{m,n} \alpha_m \beta_n |a_m, b_n\rangle \end{split}$$

Amplitudes em estados separáveis

Amplitudes do estado separável:

$$c_{mn} = \alpha_m \,\beta_n$$

ou, em termos dos produtos escalares,

$$\langle a_m, b_n | \psi, \varphi \rangle = \ _1 \langle a_m | \psi \rangle_1 \ _2 \langle b_n | \varphi \rangle_2$$

De forma geral:

$$\langle \psi', \varphi' | \psi, \varphi \rangle = \ _1 \langle \psi' | \psi \rangle_{1 \ 2} \langle \varphi' | \varphi \rangle_2$$

- Nem todo estado é separável, pois nem sempre é possível encontrar números α_m e β_n tais que c_{mn} = α_m β_n.
- Estados não-separáveis, para os quais

$$c_{mn} \neq \alpha_m \,\beta_n \,,$$

são chamados de estados emaranhados.

2020

Exemplo de estado emaranhado:

$$|\Psi\rangle = \frac{1}{\sqrt{2}} |a_1, b_2\rangle + \frac{1}{\sqrt{2}} |a_2, b_1\rangle$$

Se $|\Psi
angle$ fosse separável deveríamos ter

$$\alpha_1 \beta_2 = \alpha_2 \beta_1 = 1/\sqrt{2} ,$$

$$\alpha_1 \beta_1 = \alpha_2 \beta_2 = 0 ,$$

o que é impossível, pois a primeira equação diz que todos os α 's e β 's são diferentes de zero, e a segunda diz que pelo menos dois deles são nulos.

Outro exemplo: a função de onda de duas partículas

$$|\Psi\rangle = \int dx_1 dx_2 \,\Psi(x_1, x_2) \,|x_1, x_2\rangle$$

O estado $|\Psi
angle$ é separável se

$$\Psi(x_1, x_2) = \psi(x_1)\varphi(x_2)$$

Se $\Psi(x_1, x_2) \neq \psi(x_1)\varphi(x_2)$, o estado $|\Psi\rangle$ é emaranhado.

- Não é possível associar vetores de estado aos subsistemas individuais.
- Os subsistemas emaranhados devem ser tratados como um único objeto, mesmo quando estão separados por distâncias macroscópicas.
- O emaranhamento é responsável por alguns dos mais estranhos e surpreendentes aspectos da mecânica quântica.

Emaranhamento

"O melhor conhecimento possível de um todo não inclui o melhor conhecimento possível de suas partes, nem mesmo quando essas estão completamente separadas umas das outras e no momento não influenciam umas às outras."

> E. Schroedinger, *The Present Situation in Quantum Mechanics* (o artigo de 1935 onde aparece o gato de Schroedinger)

Par emaranhado

Sistemas Quânticos Simples

Sumário

- Ensino e Aprendizagem de Mecânica Quântica
- Fenômenos Quânticos
- Princípios da Mecânica Quântica
- Sistemas Quânticos Simples
 - Interferômetro de Mach-Zehnder
 - Caminhos indistinguíveis no interferômetro
 - Medida sem interação
 - O problema de Deutsch

• Realismo, Contextualidade e Não-localidade

Interferômetro de Mach-Zehnder

Interferômetro de Mach-Zehnder

Anticoincidência

• D_1 e D_2 nunca disparam simultaneamente

Descrição quântica do interferômetro

Espaço de estados

Transmissão e reflexão pelo semiespelho

t = amplitude de <u>transmissão</u> pelo semiespelho
 r = amplitude de <u>reflexão</u> pelo semiespelho

Evolução unitária no semiespelho

$$\begin{aligned} |1\rangle &\rightarrow |S_1\rangle = t \,|1\rangle + r \,|2\rangle \\ |2\rangle &\rightarrow |S_2\rangle = r \,|1\rangle + t \,|2\rangle \end{aligned}$$

$$\langle S_1 | S_1 \rangle = \langle S_2 | S_2 \rangle = |t|^2 + |r|^2 \langle S_1 | S_2 \rangle = t^* r + r^* t$$

Evolução unitária:

▶ Linearidade: $c_1 |1\rangle + c_2 |2\rangle \rightarrow c_1 |S_1\rangle + c_2 |S_2\rangle$

Conservação do produto escalar:

•
$$\langle 1|1 \rangle = \langle 2|2 \rangle = 1 \implies |t|^2 + |r|^2 = 1$$

• $\langle 1|2 \rangle = 0 \implies t^*r + r^*t = 0$

Amplitudes de transmissão e reflexão

► Fases de
$$r$$
 e t : $r = |r|e^{i\alpha}$, $t = |t|e^{i\beta}$
 $t^*r + r^*t = 0 \implies e^{2i(\alpha-\beta)} = -1$
 $\implies \alpha - \beta = \pm \pi/2$

▶ Semiespelho 50–50%: |r| = |t|

$$|r|^{2} + |t|^{2} = 1 \implies |r| = |t| = 1/\sqrt{2}$$
$$\implies \begin{cases} r = e^{i\alpha}/\sqrt{2} \\ t = e^{i\beta}/\sqrt{2} \end{cases}$$

Amplitudes de transmissão e reflexão

• Escolha das fases:

$$\alpha = \pi/2, \ \beta = 0 \implies \begin{cases} r = \frac{i}{\sqrt{2}} \\ t = \frac{1}{\sqrt{2}} \end{cases}$$

$$|1\rangle \rightarrow |S_1\rangle = \frac{1}{\sqrt{2}} |1\rangle + \frac{i}{\sqrt{2}} |2\rangle$$
$$|2\rangle \rightarrow |S_2\rangle = \frac{i}{\sqrt{2}} |1\rangle + \frac{1}{\sqrt{2}} |2\rangle$$

Interferômetro de Mach-Zehnder

Passagem pelo interferômetro

• Estado inicial:
$$|\psi_{inicial}\rangle = |1\rangle$$

Primeiro semiespelho:

$$|1\rangle \rightarrow |S_1\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{i}{\sqrt{2}}|2\rangle$$

Passagem pelo interferômetro

Segundo semiespelho:

Saída do interferômetro

• Estado final:
$$|\psi_{final}\rangle = i |2\rangle$$

Amplitudes de probabilidade:

$$\begin{cases} \langle 1|\psi_{final}\rangle = 0\\ \langle 2|\psi_{final}\rangle = i \end{cases}$$

Probabilidades:

$$\begin{cases} P(D_1) = 0\\ P(D_2) = |i|^2 = 1 \end{cases}$$

O mesmo resultado do experimento!

- Estado inicial: $|\psi_{inicial}\rangle = |1\rangle$
- Primeiro semiespelho:

$$\begin{split} |1\rangle \rightarrow \frac{1}{\sqrt{2}} |1\rangle + \frac{i}{\sqrt{2}} |2\rangle \\ \bullet \quad \text{Bloqueio:} \\ \frac{1}{\sqrt{2}} |1\rangle + \frac{i}{\sqrt{2}} |2\rangle \rightarrow \frac{1}{\sqrt{2}} |1\rangle + \frac{i}{\sqrt{2}} |\otimes\rangle \\ f \delta \text{ton bloqueado} \end{split}$$

Segundo semiespelho:

$$\frac{1}{\sqrt{2}}|1\rangle + \frac{i}{\sqrt{2}}|\otimes\rangle \to \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|1\rangle + \frac{i}{\sqrt{2}}|2\rangle\right) + \frac{i}{\sqrt{2}}|\otimes\rangle$$

• Estado final:
$$|\psi_{final}\rangle = rac{1}{2} |1
angle + rac{i}{2} |2
angle + rac{i}{\sqrt{2}} |\otimes
angle$$

Não há interferência.

Amplitudes de probabilidade:

$$\begin{cases} \langle 1|\psi_{final}\rangle = 1/2\\ \langle 2|\psi_{final}\rangle = i/2\\ \langle \otimes|\psi_{final}\rangle = i/\sqrt{2} \end{cases}$$

Probabilidades:

$$\begin{cases} P(D_1) = 1/4 = 25\% \\ P(D_2) = 1/4 = 25\% \\ P(\otimes) = 1/2 = 50\% \end{cases}$$

O mesmo resultado do experimento!

Mecânica Quântica

Estado inicial: $|\psi_{inicial}\rangle = |1, Z\rangle$

Primeiro semiespelho: $|1, Z\rangle \rightarrow \frac{1}{\sqrt{2}} |1, Z\rangle + \frac{i}{\sqrt{2}} |2, V\rangle$

Segundo semiespelho:

$$\begin{aligned} \frac{1}{\sqrt{2}}|1,Z\rangle &+ \frac{i}{\sqrt{2}}|2,V\rangle \rightarrow \\ & \frac{1}{\sqrt{2}}\Big(\frac{1}{\sqrt{2}}\,|1,Z\rangle + \frac{i}{\sqrt{2}}\,|2,Z\rangle\Big) + \frac{i}{\sqrt{2}}\Big(\frac{i}{\sqrt{2}}\,|1,V\rangle + \frac{1}{\sqrt{2}}\,|2,V\rangle\Big) \\ & \uparrow \end{aligned}$$

Estado final:

$$|\psi_{final}\rangle = \frac{1}{2} |1, Z\rangle + \frac{i}{2} |2, Z\rangle - \frac{1}{2} |1, V\rangle + \frac{i}{2} |2, V\rangle$$

A interferência desapareceu!

C. E. Aguiar (UFRJ)

Mecânica Quântica

Amplitudes de probabilidade:

$$\begin{cases} \langle 1Z|\psi_{final}\rangle = 1/2 \,, \quad \langle 1V|\psi_{final}\rangle = -1/2 \\ \langle 2Z|\psi_{final}\rangle = i/2 \,, \quad \langle 2V|\psi_{final}\rangle = i/2 \end{cases}$$

Probabilidades:

$$P(D_1, Z) = P(D_1, V) = P(D_2, Z) = P(D_2, V) = 1/4 = 25\%$$
$$\implies \begin{cases} P(D_1) = P(D_1, Z) + P(D_1, V) = 50\%\\ P(D_2) = P(D_2, Z) + P(D_2, V) = 50\% \end{cases}$$

 \Rightarrow o mesmo resultado do experimento!

Apagando a informação sobre o caminho

- ▶ mola não perturbada \leftrightarrow caminhos (1-1-1) e (1-2-1)
- ▶ mola vibrando \leftrightarrow caminhos (1-1-2) e (1-2-2)

2020

Apagando a informação sobre o caminho

• Estado inicial:
$$|\psi_{inicial}\rangle = |1, Z\rangle$$

Primeiro semiespelho:

$$|1,Z\rangle \rightarrow \frac{1}{\sqrt{2}}|1,Z\rangle + \frac{i}{\sqrt{2}}|2,V\rangle$$
Segundo semiespelho:

$$\frac{1}{\sqrt{2}}|1,Z\rangle + \frac{i}{\sqrt{2}}|2,V\rangle \rightarrow \frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}|1,Z\rangle + \frac{i}{\sqrt{2}}|2,V\rangle\right) + \frac{i}{\sqrt{2}}\left(\frac{i}{\sqrt{2}}|1,Z\rangle + \frac{1}{\sqrt{2}}|2,V\rangle\right)$$

Estado final:

não há informação sobre o caminho \implies interferência reaparece!

Amplitudes de probabilidade:

$$\begin{cases} \langle 1Z|\psi_{final}\rangle = 0 \,, \quad \langle 1V|\psi_{final}\rangle = 0 \\ \langle 2Z|\psi_{final}\rangle = 0 \,, \quad \langle 2V|\psi_{final}\rangle = i \end{cases}$$

Probabilidades:

$$P(D_1, Z) = P(D_1, V) = P(D_2, Z) = 0, \quad P(D_2, V) = 100\%$$
$$\implies \begin{cases} P(D_1) = P(D_1, Z) + P(D_1, V) = 0\%\\ P(D_2) = P(D_2, Z) + P(D_2, V) = 100\% \end{cases}$$

⇒ o mesmo resultado do experimento!

As probabilidades $P(D_1)$ e $P(D_2)$ dependem de diferenças entre os dois caminhos no interferômetro.

diferença de comprimentos

diferença de densidades

\bullet Características do caminho percorrido \leftrightarrow fase φ

- Estado inicial: $|\psi_{inicial}\rangle = |1\rangle$
- Primeiro semiespelho:

$$\left|1\right\rangle \rightarrow \frac{1}{\sqrt{2}}\left|1\right\rangle + \frac{i}{\sqrt{2}}\left|2\right\rangle$$

Segundo semiespelho:

$$\frac{1}{\sqrt{2}}e^{i\varphi_{1}}|1\rangle + \frac{i}{\sqrt{2}}e^{i\varphi_{2}}|2\rangle \rightarrow \frac{1}{\sqrt{2}}e^{i\varphi_{1}}\left(\frac{1}{\sqrt{2}}|1\rangle + \frac{i}{\sqrt{2}}|2\rangle\right) + \frac{i}{\sqrt{2}}e^{i\varphi_{2}}\left(\frac{i}{\sqrt{2}}|1\rangle + \frac{1}{\sqrt{2}}|2\rangle\right)$$

Estado final:

$$\left|\psi_{final}\right\rangle = \frac{1}{2} \left(e^{i\varphi_1} - e^{i\varphi_2}\right) \left|1\right\rangle + \frac{i}{2} \left(e^{i\varphi_1} + e^{i\varphi_2}\right) \left|2\right\rangle$$

Amplitudes de probabilidade:

$$\begin{cases} \langle 1|\psi_{final}\rangle = \frac{1}{2} \left(e^{i\varphi_1} - e^{i\varphi_2}\right) \\ \langle 2|\psi_{final}\rangle = \frac{i}{2} \left(e^{i\varphi_1} + e^{i\varphi_2}\right) \end{cases}$$

Probabilidades:

$$\begin{cases} P(D_1) = \frac{1}{2} \left[1 - \cos(\varphi_1 - \varphi_2) \right] \\ P(D_2) = \frac{1}{2} \left[1 + \cos(\varphi_1 - \varphi_2) \right] \end{cases}$$

$\mathsf{Defasagem}\,\times\,\mathsf{dist}\\ \hat{\mathsf{ancia}}$

$$\varphi = \frac{2\pi}{\lambda}L = kL \implies \varphi_1 - \varphi_2 = k(L_1 - L_2).$$

Caminhos indistinguíveis no interferômetro

Interferômetro de Mach-Zehnder

O que interfere no interferômetro?

C. E. Aguiar (UFRJ)

A amplitude de cada caminho

Amplitude de probabilidade para <u>cada caminho</u>:

$$\begin{cases} \mathcal{A}_1(1 \to 1) = t \times t = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{1}{2} & (1-1-1) \\ \mathcal{A}_2(1 \to 1) = r \times r = \frac{i}{\sqrt{2}} \frac{i}{\sqrt{2}} = -\frac{1}{2} & (1-2-1) \end{cases}$$

$$\begin{cases} \mathcal{A}_1(1 \to 2) = t \times r = \frac{1}{\sqrt{2}} \frac{i}{\sqrt{2}} = \frac{i}{2} & (1-1-2) \\ \mathcal{A}_2(1 \to 2) = r \times t = \frac{i}{\sqrt{2}} \frac{1}{\sqrt{2}} = \frac{i}{2} & (1-2-2) \end{cases}$$

Soma sobre caminhos

Amplitude "total" = soma das amplitudes de cada caminho:

$$\mathcal{A}(1 \to 1) = \mathcal{A}_1(1 \to 1) + \mathcal{A}_2(1 \to 1) = \frac{1}{2} - \frac{1}{2} = 0$$

$$\mathcal{A}(1 \to 2) = \mathcal{A}_1(1 \to 2) + \mathcal{A}_2(1 \to 2) = \frac{i}{2} + \frac{i}{2} = i$$

Probabilidade:

$$P(D_1) = |\mathcal{A}(1 \to 1)|^2 = |\mathcal{A}_1(1 \to 1) + \mathcal{A}_2(1 \to 1)|^2 = 0$$

$$P(D_2) = |\mathcal{A}(1 \to 2)|^2 = |\mathcal{A}_1(1 \to 2) + \mathcal{A}_2(1 \to 2)|^2 = 1$$

2020

Interferência de amplitudes

Se a e b são pontos de entrada e saída do interferômetro (a, b = 1, 2):

Caminho bloqueado

Por que não há interferência?

Apenas um caminho

Amplitude de probabilidade para cada caminho:

$$\begin{cases} \mathcal{A}(1 \to 1) = t \times t = 1/2 & \text{(1-1-1)} \\ \mathcal{A}(1 \to 2) = t \times r = i/2 & \text{(1-1-2)} \\ \mathcal{A}(1 \to \otimes) = r = i/\sqrt{2} & \text{(1-2-8)} \end{cases}$$

Só há <u>um caminho</u> entre os pontos inicial e final

 \implies não há diferentes amplitudes a serem somadas

$$\implies$$
 não há interferência!

Probabilidades:

$$P(D_1) = |\mathcal{A}(1 \to 1)|^2 = 1/4$$

$$P(D_2) = |\mathcal{A}(1 \to 2)|^2 = 1/4$$

$$P(\otimes) = |\mathcal{A}(1 \to \otimes)|^2 = 1/2$$

Caminhos alternativos distinguíveis

Caminhos alternativos distinguíveis

Caminhos alternativos distinguíveis

Amplitudes de probabilidade:

$$\begin{cases} \mathcal{A}(1Z \to 1Z) = t \times t = 1/2 & (1\mathbb{Z}\text{-}1\mathbb{Z}\text{-}1\mathbb{Z}) \\ \mathcal{A}(1Z \to 1V) = r \times r = -1/2 & (1\mathbb{Z}\text{-}2\mathbb{V}\text{-}1\mathbb{V}) \\ \mathcal{A}(1Z \to 2Z) = t \times r = i/2 & (1\mathbb{Z}\text{-}1\mathbb{Z}\text{-}2\mathbb{Z}) \\ \mathcal{A}(1Z \to 2V) = r \times t = i/2 & (1\mathbb{Z}\text{-}2\mathbb{V}\text{-}2\mathbb{V}) \end{cases}$$

Apenas um caminho entre os estados inicial e final.

Caminhos alternativos distinguíveis (cont.)

Probabilidades:

$$\begin{cases} P(1Z \to 1Z) = |\mathcal{A}(1Z \to 1Z)|^2 = 1/4 \\ P(1Z \to 1V) = |\mathcal{A}(1Z \to 1V)|^2 = 1/4 \\ P(1Z \to 2Z) = |\mathcal{A}(1Z \to 2Z)|^2 = 1/4 \\ P(1Z \to 2V) = |\mathcal{A}(1Z \to 2V)|^2 = 1/4 \end{cases}$$

Soma de probabilidades:

$$\begin{cases} P(D_1) = P(1Z \to 1Z) + P(1Z \to 1V) = 1/2\\ P(D_2) = P(1Z \to 2Z) + P(1Z \to 2V) = 1/2 \end{cases}$$

- Dois caminhos para um mesmo estado final.
- Amplitudes de probabilidade:

$$\begin{cases} \mathcal{A}_{1}(1Z \to 1Z) = t \times t = 1/2 & (1Z-1Z-1Z) \\ \mathcal{A}_{2}(1Z \to 1Z) = r \times r = -1/2 & (1Z-2V-1Z) \\ \mathcal{A}_{1}(1Z \to 2V) = t \times r = i/2 & (1Z-1Z-2Z) \\ \mathcal{A}_{2}(1Z \to 2V) = r \times t = i/2 & (1Z-2V-2V) \\ \mathcal{A}_{n}(1Z \to 1V) = \mathcal{A}_{n}(1Z \to 2Z) = 0 & \text{(não há caminho)} \end{cases}$$

Soma sobre caminhos:

$$\begin{cases} \mathcal{A}(1Z \to 1Z) = \mathcal{A}_1(1Z \to 1Z) + \mathcal{A}_1(1Z \to 1Z) = 0\\ \mathcal{A}(1Z \to 2V) = \mathcal{A}_1(1Z \to 2V) + \mathcal{A}_1(1Z \to 2V) = i\\ \mathcal{A}(1Z \to 1V) = \mathcal{A}(1Z \to 2Z) = 0 \qquad \text{(zero caminhos)} \end{cases}$$

Interferência retorna!

Regras de Feynman no interferômetro

Reflexão por um semiespelho

Transmissão por um semiespelho

$$\implies \qquad \qquad \text{amplitude} = \frac{1}{\sqrt{2}}$$

Regras de Feynman no interferômetro (cont.)

Propagação (defasagem por deslocamento)

Exemplo: interferômetro de Mach-Zehnder

Exemplo: interferômetro de Mach-Zehnder

$$\mathcal{A}(1 \to D_1) = \mathcal{A}_1 + \mathcal{A}_2 = \frac{1}{2} \left(e^{i\varphi_1} - e^{i\varphi_2} \right)$$

$$P(1 \to D_1) = |\mathcal{A}_1 + \mathcal{A}_2|^2 = \frac{1}{2} [1 - \cos(\varphi_1 - \varphi_2)]$$

Mecânica Quântica

Soma sobre histórias

Amplitude de uma história:

 $\mathcal{A}_n(a \rightarrow b) = \operatorname{produto}$ das amplitudes correspondentes a cada etapa da história n

▶ N histórias indistinguíveis: soma das amplitudes de cada história $\mathcal{A}(a \to b) = \mathcal{A}_1(a \to b) + \mathcal{A}_2(a \to b) + \dots + \mathcal{A}_N(a \to b)$ $P(a \to b) = |\mathcal{A}_1(a \to b) + \mathcal{A}_2(a \to b) + \dots + \mathcal{A}_N(a \to b)|^2$

2020

Soma sobre histórias

Há 31 anos Feynman falou-me a respeito da "soma sobre histórias", sua versão da mecânica quântica. "O elétron faz o que desejar", disse. "Ele vai em qualquer direção com qualquer velocidade,... do jeito que quiser, e então você soma as amplitudes e encontra a função de onda". Eu disse, "Você está maluco". Mas ele não estava.

- Freeman Dyson, 1980

Medida sem interação

O palito de fósforo quântico

São acesos pela absorção de um único fóton!

Medida sem interação

O palito de fósforo quântico

Um problema

fósforos bons e ruins misturados

Problema: como encher uma caixa de fósforos apenas com palitos bons?
Solução "clássica"

Solução "quântica"

Palito ruim

Palito bom

Mecânica Quântica

Teste quântico

Resultados:

- ▶ fósforo acende \implies fósforo era bom mas agora está queimado
- $\blacktriangleright D_1$ dispara \implies <u>fósforo bom intacto</u>
- \blacktriangleright D_2 dispara \implies fósforo ruim ou fósforo bom intacto

Dos fósforos bons:

- 50% foram queimados
- 25% estão identificados como bons e permanecem intactos

25% em dúvida

2020

Teste quântico

Conclusão:

É possível encher uma caixa de fósforos apenas com palitos bons!

O problema de Deutsch

O outro lado da moeda

Como saber se uma moeda é honesta ou viciada?

O outro lado da moeda

Resposta: olhando dos dois lados

1º lado 2º lado

moeda honesta

moeda viciada

Os dois lados da moeda

É possível espiar os dois lados da moeda com um único fóton?

Aparentemente, seriam necessários no mínimo dois fótons.

Os dois lados da moeda

Montagem equivalente

Os dois lados da moeda

$$P(D_{1}) = \frac{1}{2}[1 - \cos(\varphi_{1} - \varphi_{2})]$$

$$P(D_{2}) = \frac{1}{2}[1 + \cos(\varphi_{1} - \varphi_{2})]$$

$$D_{1}$$

$$D_{1}$$

$$D_{1}$$

$$D_{2}$$

$$(\varphi_{2})$$

$$\varphi_{1}$$

$$D_{2}$$

$$(\varphi_{1})$$

$$D_{2}$$

$$(\varphi_{1})$$

$$D_{2}$$

$$(\varphi_{1})$$

$$D_{2}$$

$$(\varphi_{1})$$

$$D_{2}$$

$$(\varphi_{1})$$

$$(\varphi_{1})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

$$(\varphi_{2})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

$$(\varphi_{2})$$

$$(\varphi_{2})$$

$$(\varphi_{1})$$

$$(\varphi_{2})$$

O problema de Deutsch

Seja uma função
$$f : \{0, 1\} \rightarrow \{0, 1\}.$$

É possível descobrir se a função é constante com um único cálculo de f?

O problema cuja solução (o algoritmo de Deutsch) foi um dos marcos iniciais da computação quântica.

Calculadora clássica

 $bit \leftrightarrow$ variável que só pode assumir dois valores: 0 ou 1

Para determinar se f é constante ou balanceada, temos que usar a calculadora duas vezes: uma com x = 0 e outra com x = 1.

Calculadora quântica?

 $qbit \leftrightarrow$ sistema quântico cujo vetor de estado pode ser $|0\rangle$, $|1\rangle$ ou uma superposição de $|0\rangle$ e $|1\rangle$

Calculadora quântica?

$$|x\rangle \rightarrow \mathbf{f} \rightarrow |f(x)\rangle$$

- ▶ Processo quântico \implies a operação $|x\rangle \rightarrow |f(x)\rangle$ deve corresponder a uma evolução unitária.
- Se f(x) é constante, o produto escalar não é conservado:

$$\langle 0|1\rangle = 0 \rightarrow \langle f(0)|f(1)\rangle = 1$$

 \implies a operação não é unitária

A calculadora quântica

$$|x,y\rangle \longrightarrow \boxed{\mathbf{f}} \rightarrow |x,y \oplus f(x)\rangle$$

estados de dois gbits

$$\oplus \leftrightarrow \operatorname{adição} \operatorname{\textit{módulo}} 2: \begin{cases} 0 \oplus 0 = 0\\ 0 \oplus 1 = 1 \oplus 0 = 1\\ 1 \oplus 1 = 0 \end{cases}$$

A calculadora quântica

▶ A transformação $|x,y\rangle \rightarrow |x,y \oplus f(x)\rangle$ conserva o produto escalar:

$$\langle x', y' | x, y \rangle \to \langle x', y' \oplus f(x') | x, y \oplus f(x) \rangle$$

$$\delta_{x',x} \, \delta_{y',y} \to \delta_{x',x} \, \langle x, y' \oplus f(x) | x, y \oplus f(x) \rangle = \delta_{x',x} \, \delta_{y',y}$$

já que
$$y' \oplus f(x) = y \oplus f(x) \iff y' = y.$$

A função f(x) pode ser calculada tomando y = 0:

$$|x,0\rangle \rightarrow |x,f(x)\rangle$$

mas, aparentemente, ainda são necessários de dois cálculos para determinar se f(x) é constante.

Superposições de estados de dois qbits

- ► Dois sistemas de dois estados: $|x, y\rangle$ primeiro qbit (x = 0, 1) segundo qbit (y = 0, 1)
- Base computational: $|0,0\rangle$, $|1,0\rangle$, $|0,1\rangle$, $|1,1\rangle$
- Superposição de estados do segundo qbit:

$$c_{0} |x,0\rangle + c_{1} |x,1\rangle = |x\rangle \otimes (c_{0} |0\rangle + c_{1} |1\rangle)$$

Superposição de estados do primeiro qbit:

$$c_0 |0, y\rangle + c_1 |1, y\rangle = (c_0 |0\rangle + c_1 |1\rangle) \otimes |y\rangle$$

Superposição de estados dos dois qbits:

 $c_{00} \left| 0, 0 \right\rangle + c_{10} \left| 1, 0 \right\rangle + c_{01} \left| 0, 1 \right\rangle + c_{11} \left| 1, 1 \right\rangle$

2020

• Outra base para os qbits:

$$\left|\pm\right\rangle = \frac{1}{\sqrt{2}}\left(\left.\left|0\right\rangle\pm\left|1\right\rangle\right.\right)$$

• Estados $|+\rangle$ e $|-\rangle$ no segundo qbit:

$$|x,\pm\rangle = \frac{1}{\sqrt{2}} \left(|x,0\rangle \pm |x,1\rangle \right)$$

• Processamento de $|x, +\rangle$:

$$|x,+\rangle \xrightarrow{\mathsf{f}} \frac{1}{\sqrt{2}} \left(\, |x,0 \oplus f(x)\rangle + |x,1 \oplus f(x)\rangle \, \right) = |x,+\rangle$$

• Processamento de $|x, -\rangle$:

$$|x,-\rangle \xrightarrow{\mathsf{f}} \frac{1}{\sqrt{2}} \left(|x,0 \oplus f(x)\rangle - |x,1 \oplus f(x)\rangle \right) = (-1)^{f(x)} |x,-\rangle$$

Superposição também no primeiro qbit:

$$\begin{aligned} |\pm,+\rangle &= \frac{1}{\sqrt{2}} \left(\left| 0,+ \right\rangle \pm \left| 1,+ \right\rangle \right) \\ |\pm,-\rangle &= \frac{1}{\sqrt{2}} \left(\left| 0,- \right\rangle \pm \left| 1,- \right\rangle \right) \end{aligned}$$

• Processamento de $|\pm, +\rangle$:

$$|\pm,+\rangle \xrightarrow{f} \frac{1}{\sqrt{2}} \left(\left| 0,+ \right\rangle \pm \left| 1,+ \right\rangle \right) = |\pm,+\rangle$$

• Processamento de $|\pm, -\rangle$:

$$\begin{aligned} |\pm,-\rangle &\xrightarrow{f} \frac{1}{\sqrt{2}} \left[(-1)^{f(0)} |0,-\rangle \pm (-1)^{f(1)} |1,-\rangle \right] \\ &= \frac{(-1)^{f(0)}}{\sqrt{2}} \left[|0,-\rangle \pm (-1)^{f(1)-f(0)} |1,-\rangle \right] \end{aligned}$$

$$\implies \begin{cases} f \text{ constante} & \implies |\pm, -\rangle \xrightarrow{\mathsf{f}} (-1)^{f(0)} |\pm, -\rangle \\ \\ f \text{ balanceada} & \implies |\pm, -\rangle \xrightarrow{\mathsf{f}} (-1)^{f(0)} |\mp, -\rangle \end{cases}$$

A solução do problema de Deutsch

$$|+,-\rangle \longrightarrow \boxed{\mathbf{f}} \rightarrow \begin{cases} (-1)^{f(0)} |+,-\rangle & f \text{ constante} \\ (-1)^{f(0)} |-,-\rangle & f \text{ balanceada} \end{cases}$$

Um único cálculo de f:

- $\begin{cases} \mathsf{primeiro} \ \mathsf{qbit} = + \implies f \ \mathsf{constante} \\ \\ \mathsf{primeiro} \ \mathsf{qbit} = \implies f \ \mathsf{balanceada} \end{cases}$

O computador quântico

Realismo, Contextualidade e Não-localidade

"Eu só gostaria de saber que diabos está acontecendo, é só! Eu gostaria de saber que diabos está acontecendo! <u>Você</u> sabe que diabos está acontecendo?"

Sumário

- Ensino e Aprendizagem de Mecânica Quântica
- Fenômenos Quânticos
- Princípios da Mecânica Quântica
- Sistemas Quânticos Simples
- Realismo, Contextualidade e Não-localidade
 - Realismo e variáveis ocultas
 - Contextualidade e não-localidade

Realismo e Variáveis Ocultas

Estados e grandezas físicas

Física clássica

- Estado do sistema: \vec{r} , \vec{p} (uma partícula)
- Grandeza física: $A(\vec{r}, \vec{p})$ Por exemplo:
 - energia, $E(\vec{r},\vec{p})=p^2/(2m)+V(\vec{r})$
 - momento angular, $\vec{L}(\vec{r},\vec{p})=\vec{r}\times\vec{p}$
- A grandeza A tem sempre um valor bem definido, determinado pelo estado do sistema.
- Uma medida revela o valor de A, que existe independentemente da observação ser ou não realizada.

Estados e grandezas físicas

Mecânica quântica

- Estado do sistema: vetor $|\psi\rangle$ no espaço de estados
- Grandeza física: base $\{|a_n\rangle, n = 1, 2, ...\}$ no espaço de estados
- O vetor de estado não determina o valor da grandeza física A; em geral não faz sentido falar do valor de A no estado |ψ⟩.
- ▶ O estado $|\psi\rangle$ determina apenas a probabilidade de uma medida de A resultar em $A = a_n$.
- A grandeza A não "tem" um valor antes da medida.

Realidade e observação

A ideia de um mundo real objetivo cujas menores partes existem objetivamente no mesmo sentido em que pedras e árvores existem, independentemente de nós as observarmos ou não [...] é impossível. - W. Heisenberg

Observações não apenas perturbam o que está sendo medido, elas o produzem!

– P. Jordan

Realidade e observação

Quando perguntado sobre se o algoritmo da mecânica quântica espelharia um mundo quântico subjacente, Bohr respondia, 'Não há um mundo quântico. Há apenas uma descrição abstrata dada pela física quântica. É errado pensar que a tarefa da física seja descobrir como a natureza é. A física se ocupa do que podemos dizer sobre a natureza.'

- A. Petersen, The Philosophy of Niels Bohr

Uma (não)visão de (não)mundo, se algum dia houve alguma. - *N. D. Mermin*

Realidade e observação

Física clássica: a medida revela um valor preexistente.

Mecânica quântica: a medida "cria" o resultado obtido.

Variáveis ocultas

É possível atribuir valores a grandezas físicas independentemente da realização de medidas?

$A(\psi,\lambda)$

- $A \leftrightarrow$ valor da grandeza física
- $\psi \leftrightarrow$ estado quântico ("preparação" do sistema)
- $\lambda \leftrightarrow \underline{\text{variável "oculta"}}$ que determina o valor de A

2020

Teste experimental das teorias de variáveis ocultas

Quatro experimentos possíveis \implies

• $P(A_1+, A_2+)$ (em %):

•
$$P(A_1+, B_2+) = 0$$

• $P(B_1+, A_2+) = 0$

 $P(B_1-, B_2-)=0$

A. G. White et al., Phys. Rev. Lett. 83, 3013 (1999)

Mecânica Quântica

Se $A_1(\lambda)$, $A_2(\lambda)$, $B_1(\lambda)$ e $B_2(\lambda)$ já existem antes das medidas:

$$\blacktriangleright A_1(\lambda) = A_2(\lambda) = +1 \implies B_1(\lambda) = B_2(\lambda) = -1$$

Entretanto, embora A₁(λ) = A₂(λ) = +1 seja encontrado, B₁(λ) = B₂(λ) = −1 nunca é encontrado.

- Nenhuma teoria "simples" de variáveis ocultas é compatível com resultados experimentais bem estabelecidos.
- A mecânica quântica descreve esses resultados sem dificuldades, como veremos a seguir.

Estado de Hardy

$$|\Psi\rangle = \frac{1}{\sqrt{3}} \Big(|B_1+, B_2+\rangle + |B_1+, B_2-\rangle + |B_1-, B_2+\rangle \Big)$$

C. E. Aguiar (UFRJ)

Estado de Hardy: experimento IV

$$|\Psi\rangle = \frac{1}{\sqrt{3}} \Big(\left|B_1 +, B_2 + \right\rangle + \left|B_1 +, B_2 - \right\rangle + \left|B_1 -, B_2 + \right\rangle \Big)$$

$$\langle B_1-,B_2-|\Psi\rangle=0\implies P(B_1-,B_2-)=0$$

• experimento IV \checkmark

Estado de Hardy: autoestados de A_n

Estado de Hardy: experimento III

$$|\Psi\rangle = \frac{1}{\sqrt{3}} \Big(|B_1+, B_2+\rangle + |B_1+, B_2-\rangle + |B_1-, B_2+\rangle \Big)$$

$$\langle B_1 +, A_2 + |\Psi\rangle = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} + 0 \right) = 0$$

 $\implies P(B_1 +, A_2 +) = 0$

• experimento III √

Estado de Hardy: experimento II

$$|\Psi\rangle = \frac{1}{\sqrt{3}} \Big(|B_1+, B_2+\rangle + |B_1+, B_2-\rangle + |B_1-, B_2+\rangle \Big)$$

$$\langle A_1 +, B_2 + |\Psi\rangle = \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{2}} + 0 - \frac{1}{\sqrt{2}} \right) = 0$$

 $\implies P(A_1 +, B_2 +) = 0$

• experimento II \checkmark

Estado de Hardy: experimento I

$$|\Psi\rangle = \frac{1}{\sqrt{3}} \Big(\left|B_1+, B_2+\right\rangle + \left|B_1+, B_2-\right\rangle + \left|B_1-, B_2+\right\rangle \Big)$$

$$\langle A_1+, A_2+|\Psi\rangle = \frac{1}{\sqrt{3}}\left(\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right) = -\frac{1}{2\sqrt{3}}$$

 $\implies P(A_1+, A_2+) = \frac{1}{12}$

• experimento I \checkmark

Realismo e mecânica quântica

- Nenhuma teoria "simples" de variáveis ocultas pode descrever a mesma física que um estado de Hardy, ou seja, todas são incompatíveis com a mecânica quântica.
- Há alguma forma mais elaborada das teorias de variáveis ocultas que seja compatível com a mecânica quântica?

Contextualidade e Não-localidade

Contextualidade

Teorias de variáveis ocultas contextuais:

$A(\psi,\lambda,C)$

- $A \leftrightarrow$ valor da grandeza física medida no experimento
- $\psi \leftrightarrow$ estado quântico (preparação do sistema)
- $\blacktriangleright \ \lambda \leftrightarrow \text{variável oculta}$
- $C \leftrightarrow o$ "<u>contexto</u>", as demais grandezas medidas no experimento

2020

Contextualidade

• Experimento I: $A_1(\lambda, I), A_2(\lambda, I)$

• Experimento II: $A_1(\lambda, II), B_2(\lambda, II)$

• Experimento III: $B_1(\lambda, III), A_2(\lambda, III)$

• Experimento IV: $B_1(\lambda, IV), B_2(\lambda, IV)$

Contextualidade

- O argumento usado para mostrar que qualquer teoria "simples" (não-contextual) de variáveis ocultas é incompatível com os estados de Hardy não é mais válido.
- Uma teoria contextual de variáveis ocultas pode fazer as mesmas previsões que a mecânica quântica.

Contextualidade e não-localidade

Não-localidade

Teorema de Bell

Qualquer teoria de variáveis ocultas compatível com a mecânica quântica é necessariamente não-local.